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Conventions & Notation

G is a finite group.

k is a field of characteristic p > 0.
sp(G) denotes the set of p-subgroups of G.

Sylp(G) denotes the set of Sylow p-subgroups of G.

All kG-modules are finitely generated.

kGtriv is the category of f.g. p-permutation kG-modules.
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Preliminaries

Definition

A kG-module M is a permutation module if M ≅ k[X] for some G-set X.

A kG-module M is a p-permutation module if for all P ∈ sp(G), resGP M is a
permutation module, or equivalently, if M is a direct summand of a permutation
module.

Definition

For any P ∈ sp(G), the Brauer construction is an additive functor
∶ −(P ) ∶ kGmod→ k[NG(P )/P ]mod.

The Brauer construction restricts to a functor −(P ) ∶ kGtriv→ k[NG(P )/P ]triv
which is multiplicative, i.e. for M,N ∈ kGtriv, we have a natural isomorphism

(M ⊗k N)(P ) ≅M(P )⊗k N(P ).

Think of the Brauer construction as a “P -fixed-points-on-G-sets” functor. Indeed,
k[X](P ) ≅ k[XP ].
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Endotrivial and endopermutation modules

Motivation one: endopermutation and endotrivial modules!

Definition

Let M be a kG-module.

1 M is endotrivial if and only if

M∗ ⊗k M ≅ k ⊕N,

for some projective kG-module N .

2 M is endopermutation if and only if M∗ ⊗k M is a permutation module.

Goals: classify all endotrivial and endopermutation kG-modules.
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Endotrivial modules

The group (Tk(G),⊗k) parametrizes endotrivial modules.

Tk(G) ∶= {[M] ∈ stmod(kG) ∣M is endotrivial}.

Known results

Tk(G) is finitely generated abelian. (Puig ’90, CMN ’06)

Tk(G) is determined for p-groups. (CT ’00-’04)

Tk(G) is determined for finite groups of Lie type (CMN ’06)

...and many, many more!

Completely determining Tk(G) for all groups remains open.
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Relatively endotrivial modules

Lassueur generalized endotriviality in her Ph.D. thesis to the relative projectivity
setting.

Definition

Let V and M be kG-modules.

1 M is V -projective if M is a direct summand of V ⊗k N for some kG-module N .

2 (Lassueur ’11) M is relatively V -endotrivial if M∗ ⊗k M ≅ k ⊕N for some
V -projective kG-module N .

The group (TV (G),⊗k), parametrizes the relatively V -endotrivial modules.

TV (G) ∶= {[M] ∈ stmod(V ) ∣M is relatively V -endotrivial}.
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The Dade group

Assume G is a p-group.

Say an endopermutation kG-module M is capped if M has a direct summand with
vertex G. The Dade group Dk(G) parameterizes the capped endopermutation
kG-modules.

Known results

Dk(G) is completely classified for all p-groups G. (Bouc, Carlson, Dade, Thévenaz,
Yalçin, et. al)

This classification uses Bouc’s theory of rational p-biset functors, an extension of
Mackey functors for p-groups.
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The generalized Dade group

What if G is an arbitrary finite group?

Linckelmann/Mazza and Lassueur, using separate methods, generalized the Dade
group for finite groups.

Definition (Lassueur ’13)

Set
V (FG) ∶= ⊕

P ∈sp(G)∖Sylp(G)
k[G/P ].

An endo-p-permutation kG-module is strongly capped if it is V (FG)-endotrivial.
Dk(G) ≤ TV (FG)(G) is the subgroup of TV (FG)(G) generated by equivalence
classes of strongly capped endotrivial kG-modules.

If G is a p-group, we recover the classical Dade group.
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Splendid Rickard equivalences

Motivation two: splendid Rickard equivalences and Broué’s abelian defect group
conjecture!

Definition

Let G,H be finite groups and let A,B be block algebras of kG, kH respectively. A
splendid Rickard equivalence for A and B is a chain complex X of p-permutation
(A,B)-bimodules with twisted diagonal vertices satisfying:

1 X ⊗B X∗ ≃ A[0] as chain complexes of (A,A)-bimodules.

2 X∗ ⊗A X ≃ B[0] as chain complexes of (B,B)-bimodules.

Broué’s abelian defect group conjecture

If A is a block algebra with abelian defect groups, there exists a splendid Rickard
equivalence between A and its Brauer correspondent.

Constructing these complexes is very difficult. We want more examples to understand
them better!
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Endotrivial complexes

Definition

A bounded chain complex C ∈ Chb(kGtriv) is endotrivial if

Endk(C) ≅ C∗ ⊗k C ≃ k[0],

i.e. C∗ ⊗k C ≅ k ⊕D for some contractible chain complex D.

Let Ek(G) denote the set of homotopy classes of endotrivial kG-complexes.
(Ek(G),⊗k) forms an abelian group.

Goal: classify all endotrivial complexes, i.e. determine the structure of Ek(G).
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Examples

Let p = 2. Examples of endotrivial complexes:

1 kC2 ↠ k

2 Let n ≥ 3 and let H1,H2 be noncentral, nonconjugate subgroups of D2n of order
2.

k[D2n/H1]

kD2n ⊕ k

k[D2n/H2]
Here, the homomorphisms are induced from G-set homomorphisms.
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Splendid Rickard equivalences

Endotrivial complexes induce splendid Rickard autoequivalences!

Theorem

Let C be an endotrivial complex of kG-modules. Let ϕ ∈ Aut(G) and set

∆ϕG = {(ϕ(g), g) ∈ G ×G ∣ g ∈ G} ≅ G.

indG×G∆ϕG C, regarded as a chain complex of (kG, kG)-bimodules, is a splendid Rickard

autoequivalence of kG.

Ongoing work: using these and the trivial source ring (the Grothendieck ring of

kGtriv) to study the relationship between splendid Rickard equivalences and
p-permutation equivalences.
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Relatively endotrivial complexes

We have a relative projectivity setting for endotrivial complexes.

Definition

Let V be a kG-module (possibly 0).

A bounded chain complex C ∈ Chb(kGtriv) is V -endosplit-trivial if

C∗ ⊗k C ≃ (k ⊕N)[0],

where N is a V -projective kG-module.

Two V -endosplit-trivial complexes are equivalent if they contain isomorphic
indecomposable V -endosplit-trivial complexes as direct summands. EVk (G), the
collection of all equivalence classes of V -endosplit-trivial complexes, forms an
abelian group under ⊗k.

Notes:

Letting V = 0 recovers endotrivial complexes.

V -endosplit-trivial complexes are equivalently endosplit p-permutation resolutions
of V -endotrivial modules.
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Homology

If C is V -endosplit-trivial, then there is a unique i ∈ Z for which Hi(C) ≠ 0 by
the Künneth formula.

For any P ∈ sp(G), the Brauer construction induces a group homomorphism

−(P ) ∶ EVk (G)→ E
V (P )
k

(NG(P )/P ).

Theorem

Let C ∈ Chb(kGtriv). The following are equivalent:

C is endotrivial.

For every P ∈ sP (G), C(P ) has nonzero homology in exactly one degree, with
that homology having k-dimension 1.
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h-marks

Definition

If C is a V -endosplit-trivial complex and P ∈ sp(G), let hC(P ) denote the degree
in which C(P ) has nontrivial homology. Say hC(P ) is the h-mark of C at P .

Denote the group of Z-valued class functions on p-subgroups of G by C(G,p).
hC ∈ C(G,p).

Question: How much do “local” homological properties, like the h-marks, determine
the structure of an endotrivial complex?

Answer: Almost entirely!
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The h-mark homomorphism

Let S ∈ Sylp(G). TV (G,S) ≤ TV (G) is the subgroup of p-permutation V -endotrivial
modules.

Theorem

h ∶ EVk (G)→ C(G,p)
[C]↦ hC

is a well-defined group homomorphism, with kerh the torsion subgroup of EVk (G),

{M[0] ∣M is an indecomposable p-permutation V -endotrivial module} ≅ TV (G,S).

If V = V (FG), h is surjective.

In particular, EVk (G) is finitely generated with Z-rank bounded by the number of
conjugacy classes of p-subgroups of G.
We call h the h-mark homomorphism.

Sam K. Miller University of California, Santa Cruz

On endotrivial complexes and the generalized Dade group



Motivation Endotrivial complexes h-marks and homology The Dade group

Extracting homology

Since homology of a V -endosplit-trivial complex is nonzero in only one degree, we can
extract it!

We obtain a well-defined homomorphism

H ∶ EVk (G)→ TV (G)
[C]↦ [Hh1(C)(C)]
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A short exact sequence

In the case of V = V (FG), we can completely characterize the kernel and image of H.
Define T Ek(G) ≤ Ek(G) as follows:

T Ek(G) = {[C] ∈ Ek(G) ∣H(C) = [k]}.

Theorem

We have a short exact sequence of abelian groups

0→ T Ek(G)→ EV (FG)
k

(G) HÐ→ TV (FG)(G,S) +DΩ
k (G)→ 0,

where DΩ
k (G) ≤ Dk(G) is the subgroup of Dk(G) generated by relative syzygies, i.e.

kernels of the augmentation homomorphism kX → k for some G-set X.

If G is a p-group, the short exact sequence simplifies as follows:

Theorem

Let G be a p-group. We have a short exact sequence of abelian groups

0→ Ek(G)→ EV (FG)
k

(G)→ DΩ(G)→ 0.

Sam K. Miller University of California, Santa Cruz

On endotrivial complexes and the generalized Dade group



Motivation Endotrivial complexes h-marks and homology The Dade group

Borel-Smith functions

The group of class functions C(G) has a subgroup Cb(G), the subgroup of
Borel-Smith functions. These relate to homotopy representations of the sphere.

Theorem (Bouc-Yalçin ’07)

Let G be a p-group. There is a short exact sequence

0→ Cb(G)→ C(G) ΨÐ→ DΩ(G)→ 0,

where Ψ is the Bouc homomorphism. Moreover, this is a short exact sequence of
rational p-biset functors.

This short exact sequence is compatible with ours via h-marks!

Theorem

Let G be a p-group. We have an isomorphism of short exact sequences.

0 Ek(G) EV (FG)
k

(G) DΩ(G) 0

0 Cb(G) C(G) DΩ(G) 0

h

H

h =

Ψ
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Results for p-groups

Corollary

1 Let G be a p-group and let f ∈ C(G) be a class function. f is the h-mark
function of an endotrivial complex of kG-modules if and only if f is a
Borel-Smith function.

2 We may assign rational p-biset functor structure to Ek via transport. Restriction,
inflation, and deflation are all what we expect, but induction is not tensor
induction.

3 Given any p-permutation autoequivalence γ of kG, there exists a splendid Rickard
autoequivalence X of kG for which Λ(X) = γ.

Questions:

1 Can we describe induction functorially?

2 Given a Borel-Smith function, can we give an explicit construction of an
endotrivial complex without relying on taking direct summands?
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Results for non-p-groups

Previously, we determined the image of the map induced by restriction to a Sylow
p-subgroup.

Theorem

Let G be a finite group and S ∈ Sylp(G).

resGS ∶ Ek(G)→ Ek(S)F

is surjective, where Ek(S)F ≤ Ek(S) is the fusion-stable subgroup of Ek(S), consisting
of elements [C] ∈ Ek(S) for which hC(P ) = hC(Q) for all G-conjugate P,Q ≤ S.

Corollary

Let G be a p-group and let f ∈ C(G,p) be a class function. f is the h-mark function
of an endotrivial complex of kG-modules if and only if f is a fusion-stable Borel-Smith
function.

Questions: Can we give explicit constructions of the representatives of Ek(G)?
(Seems harder!)
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Thank you!!

www.samkmiller.com
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