On endotrivial complexes and the generalized Dade group

Sam K. Miller ¹

¹University of California, Santa Cruz

May 5, 2024

arXiv: 2402.08042, 2403.04088

Sam K. Miller

On endotrivial complexes and the generalized Dade group

University of California, Santa Cruz

Conventions & Notation

- G is a finite group.
- k is a field of characteristic p > 0.
- $s_p(G)$ denotes the set of *p*-subgroups of *G*.
- $\operatorname{Syl}_p(G)$ denotes the set of Sylow *p*-subgroups of *G*.
- All *kG*-modules are finitely generated.
- $_{kG}$ triv is the category of f.g. *p*-permutation kG-modules.

Preliminaries

Definition

- A kG-module M is a permutation module if $M \cong k[X]$ for some G-set X.
- A kG-module M is a p-permutation module if for all $P \in s_p(G)$, $\operatorname{res}_P^G M$ is a permutation module, or equivalently, if M is a direct summand of a permutation module.

Definition

- For any $P \in s_p(G)$, the Brauer construction is an additive functor : $-(P) : {}_{kG}\mathbf{mod} \rightarrow {}_{k[N_G(P)/P]}\mathbf{mod}.$
- The Brauer construction restricts to a functor $-(P): {}_{kG}$ triv $\rightarrow {}_{k[N_G(P)/P]}$ triv which is multiplicative, i.e. for $M, N \in {}_{kG}$ triv, we have a natural isomorphism

$$(M \otimes_k N)(P) \cong M(P) \otimes_k N(P).$$

Think of the Brauer construction as a "P-fixed-points-on-G-sets" functor. Indeed, $k[X](P) \cong k[X^P]$.

Sam K. Miller

University of California, Santa Cruz

The Dade group

Endotrivial and endopermutation modules

Motivation one: endopermutation and endotrivial modules!

Definition

Let M be a $kG\operatorname{\!-module}$.

M is endotrivial if and only if

 $M^* \otimes_k M \cong k \oplus N,$

for some projective kG-module N.

2 M is endopermutation if and only if $M^* \otimes_k M$ is a permutation module.

Goals: classify all endotrivial and endopermutation kG-modules.

Endotrivial modules

The group $(T_k(G), \otimes_k)$ parametrizes endotrivial modules.

 $T_k(G) \coloneqq \{[M] \in \mathsf{stmod}(kG) \mid M \text{ is endotrivial}\}.$

Known results

- $T_k(G)$ is finitely generated abelian. (Puig '90, CMN '06)
- $T_k(G)$ is determined for *p*-groups. (CT '00-'04)
- $T_k(G)$ is determined for finite groups of Lie type (CMN '06)
- …and many, many more!

Completely determining $T_k(G)$ for all groups remains open.

Relatively endotrivial modules

Lassueur generalized endotriviality in her Ph.D. thesis to the relative projectivity setting.

Definition

- Let V and M be kG-modules.
 - **I** M is V-projective if M is a direct summand of $V \otimes_k N$ for some kG-module N.
 - **2** (Lassueur '11) M is relatively V-endotrivial if $M^* \otimes_k M \cong k \oplus N$ for some V-projective kG-module N.

The group $(T_V(G), \otimes_k)$, parametrizes the relatively V-endotrivial modules.

 $T_V(G) \coloneqq \{[M] \in \mathsf{stmod}(V) \mid M \text{ is relatively } V \text{-endotrivial}\}.$

The Dade group

Assume G is a p-group.

Say an endopermutation kG-module M is capped if M has a direct summand with vertex G. The Dade group $D_k(G)$ parameterizes the capped endopermutation kG-modules.

Known results

 $D_k(G)$ is completely classified for all $p\mbox{-}{\rm groups}\ G.$ (Bouc, Carlson, Dade, Thévenaz, Yalçin, et. al)

This classification uses Bouc's theory of *rational* p-biset functors, an extension of Mackey functors for p-groups.

The generalized Dade group

What if G is an arbitrary finite group?

Linckelmann/Mazza and Lassueur, using separate methods, generalized the Dade group for finite groups.

Definition (Lassueur '13)

Set

$$V(\mathcal{F}_G) \coloneqq \bigoplus_{P \in s_p(G) \setminus \operatorname{Syl}_p(G)} k[G/P].$$

- An endo-p-permutation kG-module is strongly capped if it is $V(\mathcal{F}_G)$ -endotrivial.
- $D_k(G) \leq T_{V(\mathcal{F}_G)}(G)$ is the subgroup of $T_{V(\mathcal{F}_G)}(G)$ generated by equivalence classes of strongly capped endotrivial kG-modules.

If G is a p-group, we recover the classical Dade group.

Splendid Rickard equivalences

Motivation two: splendid Rickard equivalences and Broué's abelian defect group conjecture!

Definition

Let G, H be finite groups and let A, B be block algebras of kG, kH respectively. A splendid Rickard equivalence for A and B is a chain complex X of p-permutation (A, B)-bimodules with *twisted diagonal vertices* satisfying:

- I $X \otimes_B X^* \simeq A[0]$ as chain complexes of (A, A)-bimodules.
- 2 $X^* \otimes_A X \simeq B[0]$ as chain complexes of (B, B)-bimodules.

Broué's abelian defect group conjecture

If A is a block algebra with abelian defect groups, there exists a splendid Rickard equivalence between A and its Brauer correspondent.

Constructing these complexes is very difficult. We want more examples to understand them better!

Endotrivial complexes

Definition

• A bounded chain complex $C \in Ch^b({}_{kG}triv)$ is endotrivial if

 $\operatorname{End}_k(C) \cong C^* \otimes_k C \simeq k[0],$

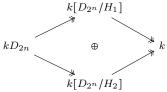
i.e. $C^* \otimes_k C \cong k \oplus D$ for some contractible chain complex D.

• Let $\mathcal{E}_k(G)$ denote the set of homotopy classes of endotrivial kG-complexes. $(\mathcal{E}_k(G), \otimes_k)$ forms an abelian group.

Goal: classify all endotrivial complexes, i.e. determine the structure of $\mathcal{E}_k(G)$.

Examples

- Let p = 2. Examples of endotrivial complexes:
 - $\mathbf{1} \ kC_2 \twoheadrightarrow k$
 - **2** Let $n \ge 3$ and let H_1, H_2 be noncentral, nonconjugate subgroups of D_{2^n} of order 2.



Here, the homomorphisms are induced from G-set homomorphisms.

On endotrivial complexes and the generalized Dade group

Splendid Rickard equivalences

Endotrivial complexes induce splendid Rickard autoequivalences!

Theorem

Let C be an endotrivial complex of kG-modules. Let $\phi \in Aut(G)$ and set

 $\Delta_{\phi}G = \{(\phi(g), g) \in G \times G \mid g \in G\} \cong G.$

 $\operatorname{ind}_{\Delta_{\phi}G}^{G\times G}C$, regarded as a chain complex of (kG, kG)-bimodules, is a splendid Rickard autoequivalence of kG.

Ongoing work: using these and the trivial source ring (the Grothendieck ring of kGtriv) to study the relationship between splendid Rickard equivalences and p-permutation equivalences.

The Dade group

Relatively endotrivial complexes

We have a relative projectivity setting for endotrivial complexes.

Definition	
Let V be a kG -module (possibly 0).	

• A bounded chain complex $C \in Ch^b({}_{kG}triv)$ is V-endosplit-trivial if

 $C^* \otimes_k C \simeq (k \oplus N)[0],$

where N is a V-projective kG-module.

Two V-endosplit-trivial complexes are *equivalent* if they contain isomorphic indecomposable V-endosplit-trivial complexes as direct summands. $\mathcal{E}_k^V(G)$, the collection of all equivalence classes of V-endosplit-trivial complexes, forms an abelian group under \otimes_k .

Notes:

- Letting V = 0 recovers endotrivial complexes.
- V-endosplit-trivial complexes are equivalently *endosplit* p-permutation resolutions of V-endotrivial modules.

Motivation	Endotrivial complexes	h-marks and homology ●○○○	The Dade group

Homology

- If C is V-endosplit-trivial, then there is a unique $i \in \mathbb{Z}$ for which $H_i(C) \neq 0$ by the Künneth formula.
- For any $P \in s_p(G)$, the Brauer construction induces a group homomorphism $-(P) : \mathcal{E}_k^V(G) \to \mathcal{E}_k^{V(P)}(N_G(P)/P).$

Theorem

Let $C \in Ch^b(_{kG} \text{triv})$. The following are equivalent:

- C is endotrivial.
- For every $P \in s_P(G)$, C(P) has nonzero homology in exactly one degree, with that homology having k-dimension 1.

h-marks

Definition

- If C is a V-endosplit-trivial complex and $P \in s_p(G)$, let $h_C(P)$ denote the degree in which C(P) has nontrivial homology. Say $h_C(P)$ is the h-mark of C at P.
- Denote the group of \mathbb{Z} -valued class functions on *p*-subgroups of *G* by C(G,p). $h_C \in C(G,p)$.

Question: How much do "local" homological properties, like the h-marks, determine the structure of an endotrivial complex?

Answer: Almost entirely!

The h-mark homomorphism

Let $S \in Syl_p(G)$. $T_V(G, S) \leq T_V(G)$ is the subgroup of *p*-permutation *V*-endotrivial modules.

Theorem

$$h: \mathcal{E}_k^V(G) \to C(G, p)$$
$$[C] \mapsto h_C$$

is a well-defined group homomorphism, with ker h the torsion subgroup of $\mathcal{E}_k^V(G)$,

 $\{M[0] \mid M \text{ is an indecomposable } p$ -permutation V-endotrivial module} $\cong T_V(G, S)$.

If $V = V(\mathcal{F}_G)$, h is surjective.

In particular, $\mathcal{E}_k^V(G)$ is finitely generated with \mathbb{Z} -rank bounded by the number of conjugacy classes of *p*-subgroups of *G*. We call *h* the h-mark homomorphism.

Extracting homology

Since homology of a $V\mbox{-endosplit-trivial complex}$ is nonzero in only one degree, we can extract it!

We obtain a well-defined homomorphism

$$\mathcal{H}: \mathcal{E}_k^V(G) \to T_V(G)$$
$$[C] \mapsto [H_{h_1(C)}(C)]$$

Motivation	Endotrivial complexes	h-marks and homology	The Dade group ●○○○○

A short exact sequence

In the case of $V = V(\mathcal{F}_G)$, we can completely characterize the kernel and image of \mathcal{H} . Define $\mathcal{TE}_k(G) \leq \mathcal{E}_k(G)$ as follows:

$$\mathcal{T}\mathcal{E}_k(G) = \{ [C] \in \mathcal{E}_k(G) \mid \mathcal{H}(C) = [k] \}.$$

Theorem

We have a short exact sequence of abelian groups

$$0 \to \mathcal{TE}_k(G) \to \mathcal{E}_k^{V(\mathcal{F}_G)}(G) \xrightarrow{\mathcal{H}} T_{V(\mathcal{F}_G)}(G,S) + D_k^{\Omega}(G) \to 0,$$

where $D_k^{\Omega}(G) \leq D_k(G)$ is the subgroup of $D_k(G)$ generated by relative syzygies, i.e. kernels of the augmentation homomorphism $kX \rightarrow k$ for some G-set X.

If G is a p-group, the short exact sequence simplifies as follows:

Theorem

Let G be a p-group. We have a short exact sequence of abelian groups

$$0 \to \mathcal{E}_k(G) \to \mathcal{E}_k^{V(\mathcal{F}_G)}(G) \to D^{\Omega}(G) \to 0.$$

Sam K. Miller

University of California, Santa Cruz

On endotrivial complexes and the generalized Dade group

Borel-Smith functions

The group of class functions C(G) has a subgroup $C_b(G)$, the subgroup of Borel-Smith functions. These relate to homotopy representations of the sphere.

Theorem (Bouc-Yalçin '07)

Let G be a p-group. There is a short exact sequence

$$0 \to C_b(G) \to C(G) \xrightarrow{\Psi} D^{\Omega}(G) \to 0,$$

where Ψ is the Bouc homomorphism. Moreover, this is a short exact sequence of rational *p*-biset functors.

This short exact sequence is compatible with ours via h-marks!

Theorem

Let G be a p-group. We have an isomorphism of short exact sequences.

$$0 \longrightarrow \mathcal{E}_{k}(G) \longleftrightarrow \mathcal{E}_{k}^{V(\mathcal{F}_{G})}(G) \xrightarrow{\mathcal{H}} D^{\Omega}(G) \longrightarrow 0$$
$$\downarrow^{h} \qquad \qquad \downarrow^{h} \qquad \qquad \downarrow^{=} \\ 0 \longrightarrow C_{b}(G) \longleftrightarrow C(G) \xrightarrow{\Psi} D^{\Omega}(G) \longrightarrow 0$$

Results for *p***-groups**

Corollary

- **1** Let G be a p-group and let $f \in C(G)$ be a class function. f is the h-mark function of an endotrivial complex of kG-modules if and only if f is a Borel-Smith function.
- 2 We may assign rational *p*-biset functor structure to \mathcal{E}_k via transport. Restriction, inflation, and deflation are all what we expect, but induction is **not** tensor induction.
- **B** Given any *p*-permutation autoequivalence γ of kG, there exists a splendid Rickard autoequivalence X of kG for which $\Lambda(X) = \gamma$.

Questions:

- I Can we describe induction functorially?
- 2 Given a Borel-Smith function, can we give an explicit construction of an endotrivial complex without relying on taking direct summands?

Results for non-*p***-groups**

Previously, we determined the image of the map induced by restriction to a Sylow p-subgroup.

Theorem

Let G be a finite group and $S \in Syl_p(G)$.

$$\operatorname{res}_S^G : \mathcal{E}_k(G) \to \mathcal{E}_k(S)^{\mathcal{F}}$$

is surjective, where $\mathcal{E}_k(S)^{\mathcal{F}} \leq \mathcal{E}_k(S)$ is the fusion-stable subgroup of $\mathcal{E}_k(S)$, consisting of elements $[C] \in \mathcal{E}_k(S)$ for which $h_C(P) = h_C(Q)$ for all *G*-conjugate $P, Q \leq S$.

Corollary

Let G be a p-group and let $f \in C(G, p)$ be a class function. f is the h-mark function of an endotrivial complex of kG-modules if and only if f is a fusion-stable Borel-Smith function.

Questions: Can we give explicit constructions of the representatives of $\mathcal{E}_k(G)$? (Seems harder!)

Thank you!!

www.samkmiller.com

Sam K. Miller On endotrivial complexes and the generalized Dade group University of California, Santa Cruz