
Hops,
Checkers,

and
Fibonaccis!

Sam K
Miller

Intro

Challenging
Knight’s
Tours

Conway’s
Checkers

Knock Em
Down

Fun with
Fibonaccis

Hops, Checkers, and Fibonaccis!
Combinatorial Games & Counting Arguments

Sam K Miller

October 19, 2022

Sam K Miller Hops, Checkers, and Fibonaccis! October 19, 2022 1 / 65



Hops,
Checkers,

and
Fibonaccis!

Sam K
Miller

Intro

Challenging
Knight’s
Tours

Conway’s
Checkers

Knock Em
Down

Fun with
Fibonaccis

Intro

Question 1.

Why do we do mathematics?

The practice of mathematics cultivates virtues that help people flourish. And the
movement towards virtue happens through basic human desires. I want to talk
about five desires we all have. The first of these is play...
Mathematics makes the mind its playground. We play with patterns, and within
the structure of certain axioms, we exercise freedom in exploring their
consequences, joyful at any truths we find...
Mathematical play builds virtues that enable us to flourish in every area of our
lives. For instance, math play builds hopefulness: when you sit with a puzzle
long enough you are exercising hope that you will eventually solve it. Math play
builds community—when you share in the delight of working on a problem with
another human being...
Play is part of human flourishing. You cannot flourish without play.

- Francis Su, “Mathematics for Human Flourishing,”
Retiring MAA Presidential Address, 2017

(the other four desires are: beauty, truth, justice, and love!)
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Intro

Question 2.

What really is mathematics?

Most mathematical activity involves the use of pure reason to discover or prove
the properties of abstract objects, which consist of either abstractions from
nature or — in modern mathematics — entities that are stipulated with certain
properties.

- Wikipedia page for “Mathematics”

My goals today:

1 Paint a picture of the playfulness of mathematics.

2 Survey some of the types of questions that captivated me from a younger
age.

3 Give a gentle taste of proofs and mathematical logic.

4 Make you flex those brain muscles a bit!

We won’t discuss my current research today - that’s a bit less gentle :)
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Challenging Knight’s Tours Overview

We’ll start with research I did in undergrad!

The Knight’s Tour

In the game of Chess, a Knight moves in an “L” shape: 2 moves vertically and 1
move horizontally, or vice versa.

Goal: On an 8 × 8 chessboard, move the Knight repeatedly move the Knight so
that it touches each square exactly once.
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Challenging Knight’s Tours Overview

Varieties of the Knight’s Tour:

Open Knight’s Tour

Closed Knight’s Tour

Challenging Knight’s Tour

Theorem (Schwenk, 1991)

The Closed Knight’s Tour is possible on an m × n chessboard, with m ≤ n,
unless:

m and n are both odd.

m = 1,2, or 4.

m = 3 and n = 4,6, or 8.

The Challenging Knight’s Tour has been computationally verified in various
cases via computer. We will prove it is possible without computer assistance!
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Challenging Knight’s Tours The Mathematical Approach

We can represent all the possible knight moves with a graph, which consists of
vertices, and edges connecting them.

The Knight’s Tour Graph

The complete knight’s tour graph has 64 vertices and 168 edges, with vertices x
and y connected if a knight can move from square x and square y.

The Challenging Knight’s Tour, Rephrased

Given a specified start and end vertex, does a Hamiltonian Path exist for the
complete knight’s tour graph?
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Challenging Knight’s Tours The Mathematical Approach

Note that a knight changes color when it jumps! Therefore, two vertices have
opposite colors if and only if they are odd distance apart. Therefore, a
chessboard graph has no cycles of odd length.

Since we must make 63 moves to finish the tour, we must end on opposite
colors. Therefore, if the start and end vertices have the same color, a
Hamiltonian path cannot exist!
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Challenging Knight’s Tours The Mathematical Approach

Definition

Call a chessboard graph traversable if we may find a Hamiltonian path from any
two vertices of opposite color.

The Challenge

Is the 8 × 8 chessboard graph traversable?
If we select two vertices with opposite color, (i.e. odd distance apart) o and e,
can we find a Hamiltonian path starting on o and ending on e?

(Benjamin, M.)

The 8 × 8 chessboard graph is traversable!

Sam K Miller Hops, Checkers, and Fibonaccis! October 19, 2022 8 / 65



Hops,
Checkers,

and
Fibonaccis!

Sam K
Miller

Intro

Challenging
Knight’s
Tours

Overview

The
Mathematical
Approach

Strategy and
Proof

Opposite
System Types

Same System
Type

Same System

Conway’s
Checkers

Knock Em
Down

Fun with
Fibonaccis

Challenging Knight’s Tours The Mathematical Approach

To begin, we will partition the chessboard graph into four subgraphs, a
divide-and-conquer strategy.

(a) and (b) are diamond-type systems, and (c) and (d) are square-type systems.
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Challenging Knight’s Tours The Mathematical Approach

All four systems are isomorphic to G4,4.

Other than the corner squares, it is always possible to hop between systems of
different type. However, it is not possible to hop from one system to the other of
same type.
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Challenging Knight’s Tours Strategy and Proof

Lemma

G4,4 is traversable.

Proof. We given an explicit construction for each possible traversal, up to
rotation and reflection.

So in a system, we can start and end anywhere, as long as the start and end are
on opposite colors!
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Challenging Knight’s Tours Strategy and Proof

Our strategy to complete the Knight’s Tour is to traverse each system, one at a
time, then hop to the next. Completing all four systems means a complete
knights tour!

Our plan will differ slightly depending on which systems the start o and end e
belong to.

Three Cases

There are three cases to consider, of increasing difficulty.

Opposite system types (ex: o ∈ S, e ∈ d)

Same system types (ex: o ∈ S, e ∈ s)

Same system (ex: o, e ∈ S)

We’ll prove that all three cases may be traversed.
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Challenging Knight’s Tours Opposite System Types

Opposite System Types

Case 1: Opposite System Types

Start at o and traverse the first system of type A, making sure to end in one of
the middle four squares m1.
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e

Figure: o
A1
ÐÐ→m1
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Challenging Knight’s Tours Opposite System Types

Opposite System Types

Jump into the system of type B that does not contain e and traverse it, ending
in a middle square m2.
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Figure: m1
B1
ÐÐ→m2
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Challenging Knight’s Tours Opposite System Types

Opposite System Types

Jump into A2 and traverse it, ending in a middle square m3.
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Figure: m2
A2
ÐÐ→m3
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Challenging Knight’s Tours Opposite System Types

Opposite System Types

Jump into B2 and traverse it, ending at e, and we’re done!
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Figure: m3
B2
ÐÐ→ e
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Challenging Knight’s Tours Same System Type

Same System Types, Opposite Systems

Case 2: Same System Type

Since we have to start and end in the same system type, we cannot simply
proceed through all four systems. We’ll need to switch things up a bit.

Lemma

Given any vertex e in G4,4, we can find three middle vertices d, x, y, with x and
y adjacent, such that a 13-step path from d to e reaches every vertex except x
and y. Call this a semitraversal.

Proof. We compute explicitly:
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Challenging Knight’s Tours Same System Type

Same System Types

Start at o and traverse the first system of type A, making sure to end in one of
the middle four squares m1. Note the locations of d, x, and y based on e.
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Figure: o
A1
ÐÐ→m1
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Challenging Knight’s Tours Same System Type

Same System Types

Jump into a system of type B and traverse it, ending in a square adjacent to x or
y (depending on which has the color of o), m2, then jump through x and y.
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Figure: m1
B1
ÐÐ→m2 Ð→ y Ð→ x
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Challenging Knight’s Tours Same System Type

Same System Types

Since x and y are in system A2 and in the center of the board, we can jump to
system B2. Traverse system B2, ending at a square next to d, m3.
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Figure: x
B2
ÐÐ→m3
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Challenging Knight’s Tours Same System Type

Same System Types

Jump to d and complete the semitraverse of A2 ending on e, and we’re done!
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Figure: m3
A2−{x,y}
ÐÐÐÐÐÐ→ e
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Challenging Knight’s Tours Same System

Same System

Case 3: Same System

Move as if you were to traverse A1 starting on o and ending on e, but stop on
your penultimate move, at n1. Find a vertex f in system B2 adjacent to e.

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

o

n1

e

f

Figure: o
A1−{e}
ÐÐÐÐ→ n1
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Challenging Knight’s Tours Same System

Same System

From n1, traverse through B1 and A2 as usual.
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e

Figure: n1
B1
ÐÐ→m2
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Challenging Knight’s Tours Same System

Same System

From n1, traverse through B1 and A2 as usual.
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Figure: m2
A2
ÐÐ→m3
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Challenging Knight’s Tours Same System

Same System

Traverse B2 ending on f , then hop to e and we are done!
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Figure: m3
B2
ÐÐ→ f Ð→ e
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Challenging Knight’s Tours Same System

Same System

Or are we? This strategy does not work when e or n1 is in the corner of the
board!
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Figure: After reaching n1, we are trapped.
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Figure: After leaving A1 we cannot reach e.
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Challenging Knight’s Tours Same System

Same System

Call n0 and n the 3rd and 4th to last vertices in the traverse of A1.

If n1 is in the corner, leave two moves earlier at n, then after traversing B1, A2,
and B2, finish A1 starting at n0, and we’re done!
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Figure: o
A1−{n0,n1,e}
ÐÐÐÐÐÐÐÐ→ n

B1,A2,B2
ÐÐÐÐÐÐ→ n0 Ð→ n1 Ð→ e
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Challenging Knight’s Tours Same System

Same System

If e is in the corner, leave one move earlier at n0, then after traversing B1, A2,
and B2, finish A1 starting at n1, and we’re done!
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Figure: o
A1−{n1,e}
ÐÐÐÐÐÐ→ n0

B1,A2,B2
ÐÐÐÐÐÐ→ n1 Ð→ e
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Challenging Knight’s Tours Same System

Since all cases have been demonstrated to be possible, we can conclude that the
8 × 8 chessboard is traversable, i.e. the Challenging Knight’s Tour is possible,
so long as the start and end squares are on opposite colors!

Corollary (M.)

The Challenging Knight’s Tour can be solved for any board of size 2m × 4n for
m ≥ 4, n ≥ 2.

This may be proven by showing that any Gm,2n is traversable and subtraversable
(an inductive argument suffices), and generalizing our strategies for the three
placement cases.
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Challenging Knight’s Tours Same System

This paper was written with the help and advice of Arthur T. Benjamin, whose
DVD lecture series “The Joy of Mathematics” was one of my first experiences
with mathematical logic in middle school!

The next two topics were first introduced to me by him.
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Conway’s Checkers

Let’s introduce a new puzzle, first studied by John Conway in 1961, Conway’s
Soldiers.

The Rules

We play on an infinite 2-dimensional grid, which is cut in half by a
horizontal line. The top half is enemy territory and the bottom half is the
friendly territory.

First, you may place any (finite) amount of checkers in the friendly territory.
After, you begin moving.

Checkers move vertically or horizontally, are only allowed to hop over each
other, and any pieces that is hopped over is removed from play.

The Goal: Get a checker n rows into enemy territory.

The Question: What is the minimum number of checkers needed to
accomplish the goal for set values of n?
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Let’s try it out for small n! n = 1?

Figure: 2 checkers are necessary

n = 2?

Figure: 4 checkers are necessary
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n = 3?

Figure: 8 checkers are necessary

n = 4?

Figure: 20 checkers are necessary

Sam K Miller Hops, Checkers, and Fibonaccis! October 19, 2022 33 / 65



Hops,
Checkers,

and
Fibonaccis!

Sam K
Miller

Intro

Challenging
Knight’s
Tours

Conway’s
Checkers

Knock Em
Down

Fun with
Fibonaccis

Conway’s Checkers

n = 5?

Theorem (Conway):

For any finite placement of checkers, it is impossible to move 5 rows into enemy
territory.

Proof: Consider a square p on row 5, and label that square 0. We will show we
cannot reach this square. For every other square, label that square by the
number of steps it would take to move to p by moving vertically or horizontally.

4

3

2

1

0

2 2

3 3

4 4 ⋯⋯

5 5

For any placement of pieces, we give each checker in the placement weight gk,
where k is the label of the square, and g = (

√
5 − 1)/2. We say the weight of the

configuration is the sum of the weights of all the checkers.
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5

4

3

2

1

0

6

2 2

3 3

4 4 ⋯⋯

5 5

6 6

7 7

78 8

⋮

As an example, under this labelling, the row 2 configuration would have weight

(g7 + g6) + (g6 + g5).

Now, g has the special property that g2 + g = 1. By multiplying each side by gn,
it follows that gn+2 + gn+1 = gn for any integer n. So we can simplify this
example to

(g7 + g6) + (g6 + g5) = (g5 + g4) = g3.

Sam K Miller Hops, Checkers, and Fibonaccis! October 19, 2022 35 / 65



Hops,
Checkers,

and
Fibonaccis!

Sam K
Miller

Intro

Challenging
Knight’s
Tours

Conway’s
Checkers

Knock Em
Down

Fun with
Fibonaccis

Conway’s Checkers

If a checker jumps to a square with lesser labeling, we replace two checkers of
weights gk, gk−1 with one checker of weight gk−2, and since gk + gk−1 = gk−2, the
weight of the new configuration is the same.

4

3

2

12 2

3 3

4 4 ⋯⋯

5 5

If the checker jumps to a square with greater labeling, we replace two checkers of
weight gk, gk+1 with a checker of weight gk+2, and since gk + gk+1 > gk+2 (as in
general, gi > gi+1 for positive i), the weight of the resulting configuration
decreases.

4

3

2

12 2

3 3

4 4 ⋯⋯

5 5

After we make any number of moves, the resulting placement’s weight must be
less than or equal to the starting placement’s weight.
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For any placement that ends on the square p in row 5, its initial weight must have
been at least 1. Now, let’s compute a bound on maximal possible initial weight
of any valid placement, by supposing there is a checker placed on every square.

⋯⋯

6 6

7 7

78 8

6

5

⋮

In row 1, the weight must be bounded by

(g5 + g6 + g7 + . . . ) + (g6 + g7 + . . . ) = g5/(1 − g) + g6/(1 − g).

However, observe:

gk + gk−1 = gk−2 ⇐⇒ gk = gk−2 − gk−1 = gk−2(1 − g) ⇐⇒ gk/(1 − g) = gk−2.

Therefore, we can simplify further:

g5/(1 − g) + g6/(1 − g) = g3 + g4 = g2,

hence any placement’s weight in the first row must be bounded by g2.
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⋯⋯

6 6

7 7

78 8

6

5

⋮

Similarly, in row 2, the weight must be bounded by

(g6 + g7 + g8 + . . . )+ (g7 + g8 + . . . ) = g((g5 + g6 + g7 + . . . )+ (g6 + g7 + . . . )) = g3.

The weight in the kth row is bounded by gk+1. So what is the final upper bound
on the weight?

g2 + g3 + g4 + ⋅ ⋅ ⋅ = g2/(1 − g) = g0 = 1.

So any finite placement must have starting weight strictly less than 1! But since
a starting weight of at least 1 is necessary to reach the square p, we cannot
reach p!
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Conway’s Checkers

What if we can (somehow) place infinitely many checkers?

Theorem: (Tatham, Taylor)

If the player is allowed to place infinitely many checkers in their starting area, it
is possible to reach row 5 after infinitely many moves.

What if we expand the game to higher dimensions?

Theorem: (Eriksson, Lindstrom)

In the n-dimensional variant of Conway’s Checkers, it is impossible to reach the
(3n − 1)th row, and always possible to reach the (3n − 2)th row.
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Frame Title

Let’s look at an old betting game, Knock Em Down, and try to find the optimal
play!

The Classical Game

Each player is given 12 tokens, and puts them on their board, which consists
of columns labeled 2 to 12.

Two dice are rolled, the results are added, and each player removes a token
from the corresponding column, if they have any left.

Repeat until a player runs out of tokens. The first player to remove all their
tokens wins!
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2 3 4 5 6 7 8 9 10 11 12

× × × × × × ×
× × ×
×
×
×(A)

2

×

3

×

4

×

5

×

6

×

7

×

8

×

9

×

10

×

11

×

12

×
×

(B)

Which player is more likely to win?

A beats B 75% of the time, B beats A 16% of the time, and there is a draw 9%
of the time.

Note that the probability of rolling a 7 is 1/6, while the probability of rolling a 2
is 1/36, as is the probability of rolling a 12.
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Knock Em Down A Simpler Variant

Let’s look at a simpler variant.

(A) (B)

1

2,3

4,5,6

×

××

××

××

× × ×

Which player wins?

If a 2 or 3 is rolled at any point, (A) wins, and otherwise (B) wins. There cannot
be a draw! (A) wins are roughly 92% of the time.
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Knock Em Down A Simpler Variant

How about this scenario?

(A) (B)

1

2,3

4,5,6 ×× × × ×

××

× ×

×

If a 2/3 is rolled twice, then (A) has an advantage.

On the other hand, if a 4/5/6 is rolled thrice, then (B) has an advantage.

If a 1 is not rolled until both the 2/3 and 4/5/6 boxes are cleared out, a tie
occurs.

These placements are very evenly matched, with (A) winning 35.3% of the time,
and (B) winning 33.6% of the time. A draw happens nearly a third of the time!
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In both scenarios, (A) was closer to the probability histogram of the game than
(B).

(A) (B)

1

2,3

4,5,6

×

××

××

××

× × ×

(A) (B)

1

2,3

4,5,6 ×× × × ×

××

× ×

×

Perhaps the optimal strategy is to follow the histogram as close as possible?

Sam K Miller Hops, Checkers, and Fibonaccis! October 19, 2022 44 / 65



Hops,
Checkers,

and
Fibonaccis!

Sam K
Miller

Intro

Challenging
Knight’s
Tours

Conway’s
Checkers

Knock Em
Down

A Simpler
Variant

Emperors and
Minimal
Allocations

Non-
transitivity

Results

Fun with
Fibonaccis

Knock Em Down Emperors and Minimal Allocations

In this variant, there are 10 outcomes and 10 tokens.

(A) (B)

1

2,3

4,5,6

7,8,9,10
××

××

× × ×

××

×

××

× × ×

× × ×

××

Our hypothesis suggests (A) wins more frequently.

However, the expected value (the weighted average) of how many rolls it takes
for (B) to clear is lower. E[XB] = 16.3, while E[XA] = 17.7.
In fact, (B) has the lowest expected value among all placements, making it a
global minimal allocation. So our hypothesis is incorrect...
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Knock Em Down Emperors and Minimal Allocations

Wait! We theorized that (A) beats (B) more frequently, not that (B) on average
finishes faster than (A). These are not necessarily the same question!

(A) (B)

1

2,3

4,5,6

7,8,9,10
××

××

× × ×

××

×

××

× × ×

× × ×

××

By the same logic as we’ve used, if a 1 is rolled before five 7/8/9/10s are rolled,
(A) must win! This is in fact likely to happen!

Despite (B) on average taking less time to finish, (A) beats (B) more often, 36%
to 23%, with a draw the most likely outcome, at 41%. In fact, (A) can be shown
to be likely to beat all possible placements.
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Knock Em Down Emperors and Minimal Allocations

Definition

Call a placement on a variant of Knock Em Down which has a probabilistic
advantage over any other placement an emperor.

So to ”solve” Knock Em Down, it suffices to find an emperor.

New question

When is there an emperor?

Let’s take another look at the previous game board, which we’ll denote
P (.1, .2, .3, .4) (each argument representing the probability of being chosen), but
now with 20 tokens.

Sam K Miller Hops, Checkers, and Fibonaccis! October 19, 2022 47 / 65



Hops,
Checkers,

and
Fibonaccis!

Sam K
Miller

Intro

Challenging
Knight’s
Tours

Conway’s
Checkers

Knock Em
Down

A Simpler
Variant

Emperors and
Minimal
Allocations

Non-
transitivity

Results

Fun with
Fibonaccis

Knock Em Down Non-transitivity

(A) (B) (C)

1

2,3

4,5,6

7,8,9,10 10

6

3

1

8

6

4

2

9

6

4

1

Here, (B) follows the histogram exactly, while (A) and (C) are a bit off. On the
other hand, it can be explicitly computed that (A) has the fastest expected time
to finishing. How do they match up?

[1,3,6,10] [2,4,6,8]

[1,4,6,9]

(.43,.39)

(.31,.26)(.48,.24)

None of these are the emperor!
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Definition

A variant of Knock Em Down with no emperor is a non-transitive game.

Going back to the game given by P (1/6,1/3,1/2) with 5 tokens, we find it is
also non-transitive, with the matchup of the five best placements as follows:

[1,2,2]

[1,1,3] [0,1,4]

[0,2,3]
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What is the smallest non-transitive game?

A three-token setup exists, with a caveat. If we restrict the P (1/6,1/3,1/2)
variant to 3 tokens, then [0,1,2] is an emperor! However, if we ban that
configuration, we reach a non-transitive situation:

[1,1,1]

[0,2,1] [0,0,3]

[1,0,2]

It is unknown whether there are other non-transitive 3-token games. However,
this is the “smallest” possible game:

Theorem (Benjamin)

A 2-token game must have an emperor.
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What about large games?

Theorem (Nelson):

As the number of tokens grows, the probability of an emperor existing goes to 0.

In short, variants with a large number of tokens are unlikely to have an emperor.
Why should this be?

Strategy: “Undercutting”

We illustrate with an example: consider the game given by P (1/3,1/3,1/3) with
3000 tokens.

If player (A) uses the allocation [1000,1000,1000], player (B) can
“undercut” by using [999,999,1002]. If we play until (B) finishes, the odds
column 3 finished last is around .36, and this is the only way (B) loses.

Player (C) can undercut (B) by using [998, 1001, 1001], as the only way (C)
loses is if column 2 finishes last in their game.

However, player (A) is favored against (C), since (A) loses only when their
last column is 1.

This strategy can be utilized to demonstrate lack of existence of an emperor.
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In general, determining for an arbitrary variant, whether an emperor exists or
what the minimal allocation is, is open (and difficult). However, some cases are
known.

Theorem

If there are only two columns in a game variant, with probability distribution
P (p,1 − p) and t tokens, the minimal allocation is [m, t −m], where m is the
pth percentile of the distribution Bin(t, p).

In the case of P (2/3,1/3) (corresponding to dice rolls of 1,2 vs. 3,4,5,6) with 9
tokens,

the emperor is [7,2],

and the minimal allocation is [6,3]
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While an emperor may not exist, a minimal allocation must exist!

Theorem (Benjamin)

Let x∗ = (x1, . . . , xn) be a minimal allocation for a t token game with
P (p1, . . . , pn) probability vector. Then x∗ satisfies:

1 If pi < pj , xi ≤ xj .

2 If pi = pj , ∣xi − xj ∣ ≤ 1.

3 If pi < pj , then (xi − 1)/xj < pi/pj .

This drastically reduces the number of cases to check to determine an emperor.
In the case of the original game, it reduces the number of cases from 646,646 to
49. One minimal allocation is:

2 3 4 5 6 7 8 9 10 11 12

× × × × × × ×

× × ×

×

×
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2 3 4 5 6 7 8 9 10 11 12

× × × × × × ×

× × ×

×

×

This placement is believed to be an emperor, but a positive answer has not yet
been proven. It is a local emperor, in that it is likely to beat any other
configuration that differs by one token.

Some final open problems:

When is a local emperor an emperor?

If x is a minimal allocation for a variant with t tokens, then there is a
minimal allocation x′ for the same variant with t + 1 tokens which contains
x.

The minimal allocation cannot differ too much from the probability
histogram P . Precisely,

lim
t→∞

x(t)

t
= P.
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Fun with Fibonaccis What do they count?

In enumerative combinatorics, we count the number of “combinatorial objects”
that exist, which have constraints indexed by the natural numbers.

If that’s a bit confusing, let’s give an example.

Question:

How many ways are there to tile a 1 × n grid with 1 × 1 squares and 1 × 2
dominoes, where all squares and dominoes are indistinguishable?

Claim: The Fibonacci number Fn, defined recursively via:

F0 ∶= 1, F1 = 1, Fn ∶= Fn−1 + Fn−2,

counts the number of ways to tile a 1 × n grid.
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Fun with Fibonaccis What do they count?

Claim: The Fibonacci number Fn, defined recursively via:

F0 ∶= 1, F1 = 1, Fn ∶= Fn−1 + Fn−2,

counts the number of ways to tile a 1 × n grid.

Proof: Let Tn count the number of ways to tile a 1 × n grid. Note that F1 = T1

and F0 = T0. Now, for any valid tiling of the 1 × n grid, it can end in only two
possible ways: with a square or with a domino.

⋯ ⋯

A valid tiling that ends with a square is the same as a valid tiling of a 1 × (n − 1)
grid, with a square tacked on at the end! Therefore, Tn−1 counts the number of
tilings of the 1 × n grid that end with a square.

By a similar argument, Tn−2 counts the number of tilings that end with a
domino! Since all tilings must end with either a square or a domino, we conclude
that Tn−2 + Tn−1 = Tn. Since the formulas for Fn and Tn match, they must be
equal!
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Using this new interpretation of the Fibonaccis, let’s prove some identities! We
will prove these by “double counting,” i.e. counting the same thing in two ways.

Theorem:

F0 + F1 + ⋅ ⋅ ⋅ + Fn = Fn+2 − 1

Proof: We ask the question, “How many n + 2-tilings are there that use at least
one domino?

(A1): There is only one tiling that doesn’t use a single domino, therefore
there are Fn+2 − 1 such tilings.

(A2): Consider the location of the rightmost domino. If the domino ends at
the (k + 2)th tile, then the k tiles before give a 1 × k-tiling, of which there
are Fk total, but all tiles after must be covered by squares. Summing over
all possibilities, this gives F0 + F1 + F2 + ⋅ ⋅ ⋅ + Fn total tilings.
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Theorem:

Fm+n = FmFn + Fm−1Fn−1.

Proof: How many m + n-tilings are there?

(A1) Fm+n, by definition.

(A2) Consider the line at the end of the mth grid:

m m + 1

It is either covered by a domino or not. If so, the remaining number of
tilings is given by Fm−1Fn−1, to the left and right of the domino, and if not,
the remaining number of tilings is given by FmFn, to the left and the right
of the line.
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Theorem:

F 2
0 + F

2
1 + ⋅ ⋅ ⋅ + F

2
n = Fn ⋅ Fn+1

Proof:

What is the area of a Fn × Fn−1 rectangle?
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Definition:

Denote n! ∶= n ⋅ (n − 1) ⋅ ⋅ ⋅ ⋅ ⋅ 1. It counts the number of ways to order n
people in a line.

Denote

(
n

k
)

for the number which counts the number of ways to choose k
(distinguishable) things from a collection of n things, where the order you
choose the things does not matter.

In combinatorics, this is given as an axiomatic definition. You may or may not
recall the formula from your algebra courses, but let’s prove it now!
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Theorem:

(
n

k
) =

n!

k!(n − k)!

Proof: We will instead prove the following identity by double counting :

(
n

k
)k!(n − k)! = n!

Recall n! counts the number of ways to order people in a line. Now, let’s ask the
question, “How many ways are there to choose k people from a group of n, order
them first in a line, then order the remaining (n − k) in the back of the line?”

1 First, we must choose k from the n.

2 Then, we order those k.

3 Finally, we order the remaining (n − k) and put them on the back.

From the definitions, this is (n
k
)k!(n − k)!. But in doing this we’ve created a

total order of the line! We’ve counted how to do the same thing in two different
ways - hence the identity is proven.
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Let’s now consider Pascal’s triangle, which has in the nth row the values of (n
k
).

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

The value anywhere in Pascal’s Triangle is equal to the sum of the values
above and to the left. Precisely, (n

k
) = (

n−1
k
) + (

n−1
k−1
).

The sum across the nth row is 2n. Why? How many ways are there to
choose some number of things from n total things?
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What about the sum across the diagonals running up and to the right?

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 ⋯

1
1
2
3
5
8
13

⋱

The Fibonaccis?
We can represent theses diagonal sums with:

(
n

0
) + (

n − 1

1
) + (

n − 2

2
) + . . .

(where we assume (n
k
) = 0 when k > n)
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Theorem:

(
n
0
) + (

n−1
1
) + (

n−2
2
) + ⋅ ⋅ ⋅ = Fn

Proof: There are Fn ways to tile a 1 × n grid. Now, how many tilings are there
where exactly k dominoes?

k = 0 - there is only 1, the tiling consisting of all squares!

k = 1 - since there is 1 domino, there must in total be n − 1 total
squares/dominoes. We just need to choose one of those to be a domino,
there are (n−1

1
) ways of doing this.

k = 2 - since there are 2 dominoes, there must be in total n − 2
squares/dominoes. We need to choose two of the tiles to be dominoes, and
there are (n−2

2
) ways of doing this.

k general - now, there will be n − k squares/dominoes, and we need to
choose k of them to be dominoes. There are (n

k
) ways of doing this.

If we consider the sum of possibilities over all k, we’re just asking how many
ways are there to tile the 1 × n grid, with any amount of dominoes!
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Thanks for listening!
Questions?
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