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1 Tensor induction of modules

Definition 1.1. (a) Let H be a finite group and n a non-negative integer. Then Sn acts on the group

Hn via π · (h1, . . . , hn) := (hπ−1(1), . . . , hπ−1(n)). The resulting semidirect product Hn ⋊ Sn is called

the wreath product, and denoted H ≀ n.

(b) Let H ≤ G be finite groups with [G : H] = n, and fix a set of coset representatives {g1, . . . , gn}. Then
there is an embedding iG≀n

G : G ↪→ H ≀ n given by

g 7→ π(h1, . . . , hn) = (hπ−1(1), . . . , hπ−1(n);π), where ggi = gπ(i)hi.

The embedding is not canonical, as it relies on a choice of coset representatives. However, all such

embeddings are conjugate subgroups.

(c) Given an RH-module M , denote by M ≀ n the R[H ≀ n]-module M ⊗R · · · ⊗RM =M⊗n as R-module,

with H ≀ n-action given by

(h1, . . . , hn;π) ·m1 ⊗ · · · ⊗mn := h1 ·mπ−1(1) ⊗ · · · ⊗ hn ·mπ−1(n).

The restriction induced by the embedding iH≀n
G : G ↪→ H ≀n produces an RG-module, denoted TenGHM .

Precisely, the action is

g · (m1 ⊗ · · · ⊗mn) = hπ−1
g (1) ·mπ−1

g (1) ⊗ · · · ⊗ hπ−1
g (n) ·mπ−1

g (n).

This is the tensor induced RG-module obtained fromM . It follows that this construction is independent

up to isomorphism of coset representatives of G/H.

(d) Similarly, given a finite H-set X, we define a H ≀ n-set X ≀ n via

(h1, . . . , hn;π) · (x1, . . . , xn) := (h1 · xπ−1(1), · · · , hn · xπ−1(n)).

The restriction by the embedding iH≀n
G : G ↪→ H ≀ n produces a G-set, denoted TenGH(X), the tensor

induced G-set obtained from X. It is clear from the construction that for any H-set X, TenGH(R[X]) ∼=
R[TenGH X].

Remark 1.2. (a) Tensor induction of modules is multiplicative, in that it satisfies the following identity:

for any RH-modules M,N ,

TenGH(M)⊗R TenGH(N) ∼= TenGH(M ⊗R N).

More generally, (M ≀n)⊗R (N ≀n) ∼= (M⊗RN)≀n, which follows after not applying restriction. However,

it is not additive, that is,

TenGH(M)⊕ TenGH(N) ̸∼= TenGH(M ⊕N)
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. Similarly, for any H-sets X,Y ,

TenGH(X)× TenGH(Y ) ∼= TenGH(X × Y ).

(b) Tensor induction (and more generally, − ≀ n) of modules is functorial in the following way: for any

f :M → N , define TenGH f : TenGHM → TenGH N by:

TenGH f(m1 ⊗ · · · ⊗mn) := f(m1)⊗ · · · ⊗ f(mn).

(c) By Dress’s theory of “algebraic maps,” tensor induction on H-sets can be extended uniquely to a

multiplicative map B(H) → B(G) which coincides with tensor induction on virtualH-sets with positive

coefficients. The formula can be expressed as follows: given [S]− [T ] ∈ B(H),

TenGH([S]−[T ]) = [TenGH S]−
(
[TenGH(S⊔T )]−[TenGH S]

)
+
(
[TenGH(S⊔T⊔T )−2[TenGH(S⊔T )]+[TenGH S]

)
−· · ·

In Curtis & Reiner’s “Methods of Representation Theory Volume 2” a simplified formula (80.49) is

given:

Let X = [S]− [T ] for H-sets S, T , and for each i ∈ {0, . . . , n}, let Vi be the G-subset of TenGH(S ⊔ T )
consisting of all elements having exactly i elements from S and n− i entries from T . Then,

TenGH([S]− [T ]) = [Vn]− [Vn−1] + · · ·+ (−1)n[V0] ∈ B(G).

However, this is false in general, and in fact is not even a well-defined formula. For example, one may

check that applying this formula to 0 = [1/1]− [1/1] ∈ B(1) yields:

0 = TenC2
1 0 = TenC2

1 [1/1]− [1/1] = 2[C2]/[C2]− [C2/1].

(d) Similarly, tensor induction on p-permutation RH-modules can be extended uniquely to a multiplicative

map T (RH) → T (RG) which coincides with tensor induction on virtual p-permutation RH-modules

with positive coefficients. The formula follows analogously. Later on, we will give a criteria for when

the above incorrect formula holds.

We begin by proving a transitive property of tensor induction. Denote by S(a,b) the symmetric group

acting on the set {(i, j) ∈ Z2 : 1 ≤ i ≤ a, 1 ≤ j ≤ b}. It is isomorphic to Sab, but not canonically, by choosing

an ordering of the set.

Proposition 1.3. (a) Sn ≀m ↪→ S(m,n)
∼= Smn via the inclusion

(σ1, . . . , σm;π) 7→ G(σ1, . . . , σm;π) :=
(
(i, j) 7→ (π(i), σπ(i)(j)

)
∈ S(m,n)

7→ G′(σ1, . . . , σm;π) := (n(i− 1) + j) 7→ n(π(i)− 1) + σπ(i)(j) ∈ Smn

This induces an inclusion (K ≀ n) ≀m ↪→ K ≀ nm given by:(
(k11, . . . , k

1
n;σ1), . . . , (k

m
1 , . . . , k

m
n ;σm);π) 7→ (k11, . . . k

1
n, k

2
1, . . . , k

m
n ;G′(σ1, . . . , σm;π))

(b) Let K ≤ H ≤ G be finite groups, with [H : K] = n and [G : H] = m. Fix sets of coset representatives

[H/K] = {h1, . . . , hn} and [G/H] = {g1, . . . , gm}. Then with the chosen set of coset representatives

[G/K] = {g1h1, g1h2, . . . , g1hn, g2h1, . . . gmhn}, the prior injective group homomorphism i : (K ≀ n) ≀
m ↪→ K ≀mn makes the following diagram commute:
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G K ≀mn

H ≀m (K ≀ n) ≀m

iK≀mn
G

iH≀m
G

iK≀n
H ≀m

i

where iK≀n
H ≀m is the map induced by iK≀n

H on all copies of H in H ≀m, i.e. the image under the functor

(−) ≀m.

Proof. The first statement is tedious but straightforward to verify. Let g ∈ G. Then under iH≀m
G ,

g 7→ π(h′1, . . . , h
′
m) = (h′π−1(1), . . . , h

′
π−1(m);π) ∈ H ≀m,

where ggi = gπ(i)h
′
i defines π and each h′i ∈ H. Then composed with iK≀n

H ≀m,

g 7→
(
σπ−1(1) · (k

π−1(1)
1 , . . . , kπ

−1(1)
n ), . . . , σπ−1(m) · (k

π−1(m)
1 , . . . , kπ

−1(m)
n );π

)
=

(
(k
π−1(1)
σπ−1(1)(1)

, . . . , k
π−1(1)
σπ−1(1)(n)

;σπ−1(1)), . . . , (k
π−1(m)
σπ−1(m)(1)

, . . . , k
π−1(m)
σπ−1(m)(n)

;σπ−1(m));π
)
∈ (K ≀ n) ≀m

where h′π−1(i)hj = hσπ−1(i)(j)
k
π−1(i)
j , i.e. h′ihj = hσi(j)k

i
j . Then composed with i,

g 7→
(
k
π−1(1)
σπ−1(1)(1)

, . . . , k
π−1(1)
σπ−1(1)(n)

, . . . , k
π−1(m)
σπ−1(m)(1)

, . . . , k
π−1(m)
σπ−1(m)(n)

;G′(σπ−1(1), . . . , σπ−1(m);π)
)
∈ K ≀mn.

On the other hand, under iK≀mn
G ,

g 7→ ψ(l11, . . . , l
1
n, l

2
1, . . . , l

m
n )

= (l
ψ−1

1 (1)

ψ−1
2 (1)

, . . . , l
ψ−1

1 (m)

ψ−1
2 (n)

;ψ)

where lij ∈ K is the (j + n(i − 1))th entry, we set ggihj = gψ1(i)hψ2(j)l
i
j , and ψ = (ψ1, ψ2) ∈ S(m,n) is

identified via ψ(j + (i− 1)n) = ψ2(j) + (ψ1(i)− 1)n following the enumeration. However, we also have

ggihj = gπ(i)hσi(j)k
i
j ,

hence kij = lij , and (ψ1(i), ψ2(j)) = (π(i), σi(j)). It follows that

ψ(j + (i− 1)n) = ψ2(j) + (ψ1(i)− 1)n

= σi(j) + (π(i)− 1)n

= σπ(π−1(i))(j) + n(π(i)− 1)

= G′(σπ−1(1), . . . , σπ−1(m);π)(j + (i− 1)n)

Thus, the permutations are the same. Furthermore,

(ψ1, ψ2)
−1(i, j) =

(
π−1(i), σ−1

π−1(i)(j)
)

so it follows that the K-elements in the two terms match, and the diagram commutes as desired.

Proposition 1.4. Let K ≤ H ≤ G be finite groups, with [H : K] = n and [G : H] = m. Let M be a

RK-module. Then,

TenGH TenHKM
∼= TenGKM and (M ≀ n) ≀m ∼= ResK≀mn

(K≀n)≀mM ≀ nm.
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Proof. By definition,

TenGH TenHKM = ResH≀m
G

(
ResK≀n

H (M ≀ n) ≀m
)

and TenGKM = ResK≀mn
G (M ≀mn). To prove these are isomorphic it suffices to show the following diagram

commutes up to isomorphism:

RKmod R[K≀n]mod R[(K≀n)≀m]mod R[K≀mn]mod

RHmod R[H≀m]mod

RGmod

−≀n

TenH
K

−≀mn

ResK≀n
H

−≀m

(ResK≀n
H )≀m

ResK≀mn
(K≀n)≀m

ResK≀mn
G

−≀m

TenG
H

ResH≀m
G

Here, all restrictions are induced by the inclusions in the previous proposition, and TenGK is the composite

of the two outer curved arrows. In fact, all subdiagrams in the diagram except for the top commute precisely,

not only up to isomorphism. The middle square commutes by definition of (ResK≀n
H )≀m, as the lower composite

corresponds to first applying restriction, then tensoring m times, while the upper composite corresponds to

first tensoring m times then applying the same restriction to each of the m copies. The triangles containing

TenHK and TenGH commute by definition. The rightmost triangle commutes by the commutativity of the

inclusions proven in the previous proposition. Hence, it suffices to show the topmost diagram commutes up

to isomorphism, which will prove both statements.

We construct the isomorphism as follows. Let V be aRK-module, and (v11⊗v1n)⊗(v21⊗· · ·⊗vmn ) ∈ (V ≀n)≀m.

The mapping is induced as follows:

(v11 ⊗ · · · ⊗ v1n)⊗ (v21 ⊗ · · · ⊗ vmn ) 7→ v11 ⊗ · · · ⊗ v1n ⊗ v21 ⊗ · · · ⊗ vmn ∈ ResK≀mn
(K≀n)≀mM ≀ nm.

This obviously induces a bijective map which is R[Hn]-linear. To verify it is a module isomorphism, it

suffices to verify the Smn-actions are compatible, but this follows by the construction of G′ arising from the

enumeration in the previous proposition.

Proposition 1.5. Let H ≤ G be finite groups and M a finitely generated RH-module which is projective

as R-module. Then M∗ ≀n ∼= (M ≀n)∗ naturally for any n ∈ N. In particular, we have a natural isomorphism

TenGHM
∗ ∼= (TenGHM)∗.

Proof. We have a natural (in all components) transformation of additive functors Rmod×n → Rmod,

M∗
1 ⊗R · · · ⊗RM∗

n 7→ (M1 ⊗R · · · ⊗RMn)
∗, f1 ⊗ · · · ⊗ fn 7→

(
m1 ⊗ · · · ⊗mn 7→ f1(m1) · · · fn(mn)

)
It is easy to check that if all Mi are free R-modules, then it is a natural isomorphism, hence it follows that

if all the Mi are projective R-modules, it is a natural isomorphism as well. Thus M∗ ≀ n ∼= (M ≀ n)∗ as

R-modules.

It remains to verify the natural isomorphism is H ≀n-linear. Let (h1, . . . , hn;π) ∈ H ≀n, then we compute:

ϕ : (h1, . . . , hn;π) · f1 ⊗ · · · ⊗ fn = fπ−1(1)(h
−1
1 · −)⊗ · · · ⊗ fπ−1(n)(h

−1
n · −)

7→
(
v1 ⊗ · · · ⊗ vn 7→ fπ−1(1)(h

−1
1 · v1) · · · fπ−1(n)(h

−1
n · vn)

)
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On the other hand,

(h1, . . . , hn;π) · ϕ : f1 ⊗ · · · ⊗ fn

7→ (h1, . . . , hn;π) ·
(
v1 ⊗ · · · ⊗ vn 7→ f1(v1) · · · fn(vn)

)
=

(
v1 ⊗ · · · ⊗ vn 7→ f1(h

−1
π(1) · vπ(1)) · · · fn(h

−1
π(n)vπ(n))

)
noting that (h1, · · · , hn;π)−1 = (h−1

π(1), · · · , hπ(n);π
−1). But these are the same functions ordered differently,

so we conclude the natural isomorphism is H ≀ n-linear, as desired. Since restriction commutes with duals,

the last statement follows immediately.

2 Tensor induction of chain complexes

The construction used for tensor induction of chain complexes appears to have first been constructed by

Evens in 1961 in the construction of the Evens norm map, an analogous norm map to tensor induction for

cohomology. While this construction has been used on occasion since then, the properties of this construction

do not appear to have been studied in further detail, or at minimum have not been documented. We will

study some basic properties of the construction, proving that it has all the analogous properties of tensor

induction on modules and G-sets.

Definition 2.1. Let H ≤ G be finite groups with [G : H] = n. If C = · · · → Ci
di−→ Ci−1 → · · · is a chain

complex of RH-modules, then C ⊗R · · · ⊗R C = C⊗n is a R[Hn]-chain complex by diagonal action. Note

that the transition maps are as follows:

da1,...,an : Ca1 ⊗R · · · ⊗R Can → (C ≀ n)a1+···+an−1

m1 ⊗ · · · ⊗mn 7→
n∑
i=1

(−1)a1+···+ai−1m1 ⊗ · · · ⊗ dai(mi)⊗ · · · ⊗mn

Define C ≀ n as a chain complex of R[H ≀ n]-modules as follows: let C ≀ n be C⊗n as chain complexes of

R[H ≀ n]-modules, and for m1 ⊗ · · · ⊗mn ∈ Ca1 ⊗R · · · ⊗R Can ⊆ (C ≀ n)a1+···+an and (h1, . . . , hn;π) ∈ H ≀ n,
then

(h1, · · ·hn;π) · (m1 ⊗ · · · ⊗mn) = (−1)νπh1mπ−1(1) ⊗ · · · ⊗ hnmπ−1(n)

∈ Caπ−1(1)
⊗R · · · ⊗R Caπ−1(n)

⊆ (C ≀ n)a1+···+an

where

νπ =
∑
j<k

π(j)>π(k)

ajak

Denote by TenGH(C) the restriction of C ≀ n from H ≀ n to G via the inclusion G ↪→ H ≀ n described prior. In

particular, the G-action is as follows:

g · (m1 ⊗ · · · ⊗mn) = (−1)νπghπ−1
g (1)mπ−1

g (1) ⊗ · · · ⊗ hπ−1
g (n)mπ−1

g (n)

This is the tensor induced chain complex obtained from C.

The sign change given by νπ corresponds to writing π as a product of simple transpositions (1, i) and

for each one multiplying by a sign of (−1)a1ai . The sign change is necessary so that the transition maps are

compatible with the G-action. We now prove the following analogs of the previously stated properties of

tensor induction for modules or G-sets.
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Proposition 2.2. Let H ≤ G be finite groups and C,D bounded chain complexes of RH-modules. Then

for any n ∈ N,
(C ≀ n)⊗R (D ≀ n) ∼= (C ⊗R D) ≀ n.

In particular,

TenGH(C)⊗R TenGH(D) ∼= TenGH(C ⊗R D).

Proof. The latter statement follows from the former by applying restriction. Let C = · · · → Ci
di−→ Ci−1 →

· · · and D = · · · → Di
ei−→ Di−1 → · · · . We claim the component-level maps

ϕ : (Ca1 ⊗R · · · ⊗R Can)⊗R (Db1 ⊗R · · · ⊗R Dbn)
∼= (Ca1 ⊗R Db1)⊗R · · · ⊗R (Can ⊗R Dbn),

(c1 ⊗ · · · ⊗ cn)⊗ (d1 ⊗ · · · ⊗ dn) 7→ (−1)s(c1 ⊗ d1)⊗ · · · ⊗ (cn ⊗ dn),

where

s =

n∑
i=1

ai

i−1∑
j=1

bj


induce a chain complex isomorphism of R[H ≀ n]-modules. It is straightforward to see this is R[Hn]-linear

and bijective, and that it respects the Sn-action and differentials up to a sign. It remains to show that the

signs are compatible with the Sn-action and the graded differentials.

We first verify the sign is compatible with the sign induced by the Sn action. It suffices to prove this for

simple transpositions of the form (k, k+1), and compare signs of of −1νC(k,k+1) + νD(k,k+1) + s′ (corresponding

to applying ϕ first) and (−1)
s+νC⊗D

(k,k+1) (corresponding to first permuting), where s′ corresponds to the sign

calculation after permuting,

s′ =

n∑
i=1

a(k,k+1)(i)

i−1∑
j=1

b(k,k+1)(j)

 .

It follows that νC(k,k+1) + νD(k,k+1) = akak+1 + bkbk+1 and νC⊗D
(k,k+1) = (ak + bk)(ak+1 + bk+1). Moreover, it

is routine to compute that s′ − s = aibk+1 − ak+1bi, so we observe

s′ + νC(k,k+1) + νD(k,k+1) − (s+ νC⊗D
(k,k+1)) = −2ak+1bi,

hence the signs match, as desired. Thus, the choice of s produces isomorphisms ϕ compatible with the

R[H ≀ n]-module structure.

We now verify the choice of s commutes with the graded differentials. Consider the differential dCai coming

from the complex C in the ith component. Following ϕ first, then the differential yields the sign

(−1)s+a1+b1+···+ai−1+bi−1 .

On the other hand, first following the differential, then ϕ, yields the sign

(−1)a1+···+ai−1+s−(b1+···+bi−1).

The exponents differ only by signs, hence they have the same parity, so the isomorphism commutes with

all C-differentials. Similarly, if we consider the differentials dDbj coming from the complex D int he jth

component, if we follow ϕ first, then the differential, we obtain the sign

(−1)s+a1+b1+···+aj−1+bj−1+aj .

If we follow the differential, then ϕ, we obtain

(−1)a1+···+an+b1+···+bj−1+s−(aj+1+···+an).

The exponents match, so we conclude ϕ commutes with all differentials, as desired.
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Proposition 2.3. Let H ≤ G be finite groups, and C = · · · → Ci
di−→ Ci−1 → · · · a chain complex of RH-

modules which are projective as R-modules. Then C∗ ≀ n ∼= (C ≀ n)∗, where C∗ denotes the chain complex

induced by the dual. In particular, TenGH(C∗) ∼= (TenGH C)
∗.

Proof. We have a natural (in all components) transformation of additive functors Rmod×n → Rmod,

M∗
1 ⊗R · · · ⊗RM∗

n 7→ (M1 ⊗R · · · ⊗RMn)
∗, f1 ⊗ · · · ⊗ fn 7→

(
m1 ⊗ · · · ⊗mn 7→ f1(m1) · · · fn(mn)

)
It is easy to check that if all Mi are free R-modules, then it is a natural isomorphism, hence it follows that if

all theMi are projective R-modules, it is a natural isomorphism as well. From this, we obtain componentwise

natural isomorphisms

C∗
a1 ⊗R · · · ⊗R C∗

an
∼= (Ca1 ⊗R · · · ⊗R Can)∗.

It remains to verify the componentwise isomorphisms are H ≀ n-linear. Let (h1, . . . , hn;π) ∈ H ≀ n, then
we compute:

ϕ : (h1, . . . , hn;π) · f1 ⊗ · · · ⊗ fn = fπ−1(1)(h
−1
1 · −)⊗ · · · ⊗ fπ−1(n)(h

−1
n · −)

7→
(
v1 ⊗ · · · ⊗ vn 7→ fπ−1(1)(h

−1
1 · v1) · · · fπ−1(n)(h

−1
n · vn)

)

On the other hand,

(h1, . . . , hn;π) · ϕ : f1 ⊗ · · · ⊗ fn 7→ (h1, . . . , hn;π) ·
(
v1 ⊗ · · · ⊗ vn 7→ f1(v1) · · · fn(vn)

)
=

(
v1 ⊗ · · · ⊗ vn 7→ f1(h

−1
π(1) · vπ(1)) · · · fn(h

−1
π(n)vπ(n))

)
noting that (h1, · · · , hn;π)−1 = (h−1

π(1), · · · , hπ(n);π
−1) and that the resulting functions belong to (Cπ−1(1))⊗

Cπ−1(n))
∗. But these are the same functions ordered differently, so we conclude the componentwise natural

isomorphisms are H ≀ n-linear. It remains to verify the maps are compatible with the graded differential

structure. By naturality, the following diagram commutes, and the result follows.

C∗
a1 ⊗R · · · ⊗R C∗

an (Ca1 ⊗R · · · ⊗R Can)∗

C∗
a1 ⊗R · · · ⊗R C∗

ai+1 ⊗R · · · ⊗R Cn (Ca1 ⊗R · · · ⊗R Cai+1 ⊗R · · · ⊗R Can)∗

ϕ

(−1)−(a1+···+ai−1) id⊗···⊗(diai+1)
∗⊗···⊗id (−1)a1+···+ai−1 (id⊗···⊗diai+1⊗···⊗id)∗

ϕ

Proposition 2.4. Let K ≤ H ≤ G be finite groups with [H : K] = n and [G : H] = m. Let C be a chain

complex of RK-modules. Then,

TenGH TenHK C
∼= TenGK C and (C ≀ n) ≀m ∼= C ≀ nm.

Proof. It again suffices to prove that the following diagram commutes:

7



Ch(RKmod) Ch(R[K≀n]mod) Ch(R[(K≀n)≀m]mod) Ch(R[K≀mn]mod)

Ch(RHmod) Ch(R[H≀m]mod)

Ch(RGmod)

−≀n

TenH
K

−≀mn

ResK≀n
H

−≀m

(ResK≀n
H )≀m

ResK≀mn
(K≀n)≀m

ResK≀mn
G

−≀m

TenG
H

ResH≀m
G

The four bottom-most subdiagrams commute for the same reasons as before, therefore it only remains

to show (C ≀ n) ≀m ∼= ResK≀mn
G C ≀ nm. Let C = · · · → Ci

di−→ Ci−1 → · · · , then we have a componentwise

isomorphism,

(Ca1,1 ⊗R · · · ⊗R Can,1
)⊗R · · · ⊗R (Ca1,m ⊗R · · · ⊗R Can,m

)

→ Ca1,1 ⊗R · · · ⊗R Can,1
⊗R · · · ⊗R Ca1,m ⊗R · · · ⊗R Can,m

which is constructed similarly to the module-theoretic version of the theorem. It follows that this isomorphism

is compatible with the graded differential structure (no sign changes are necessary) and is R[(K ≀ n) ≀ m]-

linear.

3 Restriction to trivial source and linear source

It is known that tensor induction of modules restricts to a functor of chain complexes of p-permutation

modules. However, in general, tensor induction does not restrict to a functor of p-permutation modules, as

the following example demonstrates:

Example 3.1. Let C ∈ Chb(Omod) be the contractible chain complex 0 → O → O → 0, with the last

nonzero term in degree 0. Then,

C ≀ 2 = 0 → O− → OC2 → O,

where O− corresponds to the sign representation sending the nontrivial element of C2 to −1.

However, when working over any field in a p-modular system, tensor induction indeed restricts to a functor

of chain complexes of p-permutation modules. This is obvious over K since every module is a p-permutation

module. Additionally, over O, tensor induction restricts to a functor of chain complexes of linear source

modules.

Theorem 3.2. Let H be a finite group, n a natural number, (K,O, k) a p-modular system.

(a) − ≀ n : Chb(kHmod) → Chb(k[H≀n]mod) restricts to a functor − ≀ n : Chb(kHtriv) → Chb(k[H≀n]triv).

(b) − ≀ n : Chb(OHmod) → Chb(O[H≀n]mod) restricts to a functor − ≀ n : Chb(OH lin) → Chb(O[H≀n]lin).

Lemma 3.3. Let k be any field and G a finite group. Any kG-module M with k-dimension 1 is a p-

permutation module.

Proof. If F has characteristic 0, then all modules are trivial source modules so this is obvious. Otherwise

assume F has characteristic p. Consider any element g ∈ G with order a power of p. Since k has no primitive
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pth roots of unity, g acts trivially onM , hence after restriction to a p-subgroup P ≤ G, ResGP M is the trivial

representation. Since a module is p-permutation module if and only if upon restriction to all P -subgroups

it is a permutation module, the result follows.

Proof of theorem. Let R denote either O or k, and let C ∈ Chb(RHmod) be a bounded complex of finitely

generated p-permutation modules and denote the degree i component by Ci. Assume without loss of gener-

ality that Ci = 0 for i ≤ 0. When considered as a chain complex of R[Hn]-modules, each direct summand of

(C ≀ n)k is of the form Ca1 ⊗k · · · ⊗k Can , where
∑n
i=1 ai = l. Then, Sn acts on the R[Hn]-direct summands

of (C ≀ n)l as follows:
π(Ca1 ⊗k · · · ⊗k Can) := Caπ−1(1)

⊗k · · · ⊗k Caπ−1(n)
,

corresponding to the Sn-action defined on C ≀ n. Fix a1, . . . , an, then we define the R[Hn]-module Ma1,...,an

as follows. Set Ca1,...,an := Ca1 ⊗k · · · ⊗k Can , then

Ma1,...,an =
⊕

M ′∈Sn·Ca1,...,an

M ′,

i.e. Ma1,...,an is the direct sum of the Sn-orbit of Ca1,...,an . It follows via the construction that Ma1,...,an is

a R[H ≀ n]-module, and

(C ≀ n)l =
⊕

a1,...,an is a partition of l

Ma1,...,an .

(a) It suffices to show if C ∈ Chb(kHtriv), then for any choice of a1, . . . , an, Ma1,...,an ∈ k[H≀n]triv. Since

all Ci ∈ kHtriv, then C1 ⊕ · · · ⊕ Cm is a direct summand of some N ∈ kHperm. Then as k[Hn]-

modules, any module living in the Sn-orbit of Ca1,...,an is a direct summand of N ⊗k · · ·⊗kN , and thus

as k[H ≀ n]-modules, Ma1,...,an is a direct summand of N ≀ n. However, for K ≤ H a vertex of N , we

have an isomorphism N ∼= IndHK(k), and under this identification, an isomorphism of k[H ≀n]-modules:

N ≀ n ∼= IndH≀n
K≀n(k ≀ n)

(h1 ⊗ v1)⊗ · · · ⊗ (hn ⊗ vn) 7→ (h1, · · · , hn; id)⊗ (v1 ⊗ · · · ⊗ vn)

Here, k ≀ n has k-dimension 1 and has K ≀ n-action given by

π(k1, . . . , kn)(v1 ⊗ · · · ⊗ vn) = (−1)νπ (vπ−1(1) ⊗ · · · ⊗ vπ−1(n)).

By the previous lemma, k ≀ n is a trivial source module, hence k ≀ n is a direct summand of IndK≀n
L k

for some L ≤ K ≀ n. Hence Ma1,...,an is also a direct summand of IndH≀n
K≀n Ind

K≀n
L k = IndH≀n

L k, thus is

a p-permutation module.

(b) The proof follows similarly as before withO in place of k, except the isomorphismN ≀n ∼= IndH≀n
K≀n(O≀n) is

sufficient to demonstrateMa1,...,an is a linear source module, since O≀n as described earlier has O-rank

1.
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